
Future Generation Computer Systems 22 (2006) 908–914
www.elsevier.com/locate/fgcs
Using zero configuration technology for IP addressing in optical networks

Freek Dijkstra∗, Jeroen J. van der Ham, Cees T.A.M. de Laat

Advanced Internet Research Group, Universiteit van Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, Netherlands

Available online 3 May 2006

Abstract

Host configuration in optical networks is usually done by hand. In this paper we propose to use zero configuration techniques, including
self-assigned IP addresses and multicast DNS to do this automatically. The proposed technology is designed for small networks without central
control, and can be applied to optical private networks as long as there is no router in between the end-hosts.
c© 2006 Published by Elsevier B.V.

Keywords: Zero configuration; Ad hoc networks; Optical networks; Hybrid networks
1. Introduction

Optical networks allow users to transfer data between a
limited set of locations using dedicated switched circuits
(lightpaths). Currently, most of the configuration of lightpaths
is done manually, including the host configuration. Host
configuration includes the assignment of an IP address, and
possibly also modification of the routing table, configuration
of the hostname and tuning of protocol stacks.

Widespread adoption of lightpaths benefits from the
automation of the setup and configuration processes. Ideally,
end-hosts automatically communicate with each other in the
best possible way: via dedicated circuits if available, or the
best-effort Internet if not. Preferably, applications do not
need to know about the exact type of network available, and
can transparently switch between dedicated and best-effort
networks.

1.1. Requirements

An ideal architecture to handle automatic configuration
of end-hosts for complex dynamic networks adheres to the
following requirements.

• It supports a scenario where two remote LANs with
multiple computers are connected together using a dedicated
connection (not just host-to-host connections).

∗ Corresponding author. Tel.: +31 20 5257531.
E-mail address: fdijkstr@science.uva.nl (F. Dijkstra).

0167-739X/$ - see front matter c© 2006 Published by Elsevier B.V.
doi:10.1016/j.future.2006.03.021
• The architecture scales well.
• It supports dynamic network joins and splits, without

impacting stability.
• It handles graceful transition between dedicated networks

and the best effort Internet.
• It supports both IPv4 and IPv6 addresses.

In addition, the following features are considered beneficial
as well:

• There is a minimum amount of changes to applications,
preferably none.

• It respects the administrative boundaries of separate
domains. Decision points do not control hosts in other
domains.

• It works well with name resolution (e.g. DNS), and service
discovery.

• The solution is independent of other technologies (like those
on other OSI layers).

• It supports complex host configurations (e.g. routing table
changes, tuning of protocol stacks, instead of just assigning
an IP address).

• It may support network scenarios where there is a router
between the end hosts.

Note that some items may yield conflicting requirements.
For example, complex configuration mentions two examples on
different OSI layers (respectively the network layer for routing
table and the transport layer for protocol stacks). This may
conflict with the requirement that any solution is independent
of other OSI layer technologies.

http://www.elsevier.com/locate/fgcs
mailto:fdijkstr@science.uva.nl
http://dx.doi.org/10.1016/j.future.2006.03.021


F. Dijkstra et al. / Future Generation Computer Systems 22 (2006) 908–914 909
Fig. 1. A typical optical network scenario: two LANs, each with two hosts are
joined together using a lightpath.

The last item also deserves a short note: in our opinion,
routers on a “lightpath” are undesirable: the network should
provide an end-host with either a regular Internet connection
(possibly with guaranteed quality of service), or provide a
dedicated circuit on layer 1 (or perhaps a layer 2 connection),
without any layer 3 device.

Most of the technologies discussed in this paper explicitly
assume a layer 2 connection, without routers, like the one
shown in Fig. 1. The conclusions in Section 4 discuss the
applicability of these techniques in more detail.

1.2. Solution models

A traditional way to solve a complex distributed configura-
tion problem is to introduce a central authority that tells each
component its configuration at any point in time. For host con-
figurations, a central decision point alleviates the intelligence
from the individual hosts and keeps track of the current network
topology.

A hierarchical solution with a central authority violates
the end-to-end principle [1], one of the design principles
for Internet protocols [2]. Our preferred solution would be
one where all layer 3 devices, like end-hosts and routers,
autonomously decide on the best configuration without
consulting a central authority.

In optical networks, two communicating end-hosts typically
fall within different administrative domains. This makes it
even more prominent to use a solution which does not require
negotiation of leadership, and to avoid a solution where a
controller in one domain tells an end-host in another domain
how to behave.

2. Zero configuration technologies

Zero configuration networking is a concept to enable net-
working in the absence of configuration and administration [3].
While this is different from our scenario, network configuration
with two or more administrative domains, zero configuration
technology can very well be applied to this scenario.

This section describes three specific zero configuration tech-
nologies. More details regarding technology and implementa-
tion can be found at [3–5]. The three problems discussed in this
section are:

• Automatic assignment of link-local IPv4 addresses, without
a DHCP server;

• Translation between hostname and address, without a DNS
server;

• Service Discovery, without a directory server.
Link-local, in the context of zero configuration, means a
logical (layer 2) network. Thus, a device can always reach all
other link-local devices using Ethernet broadcast or multicast
packets. A link-local IP address means an IP address which has
only a valid meaning on the same link-local network.

2.1. Automatic configuration of IP addresses

There are two specifications for automatic generation and
assignment of link-local IP addresses: one for IPv4 and one for
IPv6.

The standard for IPv4 is defined in RFC 3927 [6].
Basically, a network device picks an address at random in the
169.254.0.0/16 range, and sends out an ARP request to check if
another device is using it. If the device notices that the address
is in use, it picks another IP address.

The standard for IPv6 is defined in RFC 2462 [7]. Self-
Assigned IPv6 addresses fall in the range FE80::0/10. By
default, network devices choose an address by appending their
interface identifier (e.g. the MAC address) to the link prefix.

2.2. Name lookup

There are two competing standardization attempts for
name lookup without an authoritative name server: Multicast
DNS (mDNS) and Link-Local Multicast Name Resolution
(LLMNR) [8,9]. LLMNR is under development in the IETF, but
is not (yet) used in practice, and is more limited in functionality
than mDNS. mDNS has a well-established user-base.

Normally, a host that want to lookup a DNS name consults
a central DNS server. The idea implemented by mDNS and
LLMNR is that all hosts listen to a specific IP multicast address.
A host that wants to do a lookup broadcasts the query on the
local-link to this multicast address. Whichever host(s) know(s)
the answer to the query replies to the requesting host. This
answer is only valid in the context of the local link. Instead
of using fully qualified domain name (FQDN), hosts pick a
hostname in the .local name space.1

While Multicast DNS and link-local IP addressing are often
used in conjunction, they do not depend on each other.

2.3. Service discovery

There are multiple standards dealing with discovery of
services, including:

• Service Location Protocol (SLP), as standardized in the
IETF [10]

• DNS Service Discovery (DNS-SD) [11]
• Simple Service Discovery Protocol (SSDP) [12], which is

part of Universal Plug and Play (UPnP).

1 With LLMNR, hosts can use any namespace, which is considered a security
risk.



910 F. Dijkstra et al. / Future Generation Computer Systems 22 (2006) 908–914
Table 1
Computers in use for the demonstration

Hostname Location System Purpose

VanGogh7 Amsterdam Intel 32-bit, Red Hat GridFTP server
VanGogh8 Amsterdam Intel 32-bit, Red Hat GridFTP server
Webcam Amsterdam G5, Mac OS X HTTP webcam
igrid-demo05 San Diego Opteron, Windows XP Web browser
igrid-demo06 San Diego Opteron, Fedora Network visualization
pb-freek San Diego G4 (laptop), Mac OS X GridFTP client
(none) San Diego (any) Visitors laptop
SLP is the only IETF standard, but seems little used at the
time of writing.

DNS-SD works particularly well with mDNS, since it also
uses DNS records. It is based on the use of SRV records,
as described in RFC 2782 [13], but uses another level of
indirection (PTR records pointing to SRV and TXT records).
DNS-SD is considered a lightweight protocol, and service type
registration (e.g. http. tcp) happens on an informal first-
come-first-served basis.

SSDP is considered to be more complex than DNS-SD.
SSDP uses HTTP notification announcements to discover
services as identified by a unique combination of a service type
URI and a Unique Service Name. The Device Control Protocols
as used by SSDP are supervised by the Universal Plug and
Play (UPnP) Steering Committee. UPnP is more formalized
than DNS-SD, which may be an advantage or a disadvantage
depending on your point of view.

The above protocols all support a scenario without a central
directory server. There are more service discovery protocols,
like UDDI for web services, Jini for Java objects, Salutation,
and Service Discovery Protocol (SDP) for Bluetooth. These
protocols can be considered as “higher layer” protocols,
because they are application or technology specific.

3. iGrid 2005 demonstration

During previous demonstration events, like SuperComput-
ing 2004, we noticed that IP configuration was a labour-
intensive process, even for networks which do not require
routable IP addresses. In our opinion this can be made easier
using link-local IP addresses. We decided to demonstrate zero
configuration networking during iGrid 2005, both to discover
possible technical limitations (e.g. due to the long latency) as
well as to test if it is feasible that every demonstration uses zero
configuration networking on an event like iGrid.

3.1. Network setup

Our network setup is very similar to the one shown in Fig. 1,
with three computers in Amsterdam and two computers in San
Diego. In addition, we allowed visitors to plug their laptops
into the network. The hosts in San Diego were connected
together with a small consumer brand Ethernet switch. From
there, a 182 ms round-trip link connected this switch to a high-
end Ethernet switch in Amsterdam, which connected the three
Amsterdam hosts. The whole connection between San Diego
and Amsterdam consisted of private links, never touching any
router along the way.

As shown by Table 1, we created a heterogeneous
environment, by using a diversity of operating systems.

3.2. Implementations

We choose the following zero configuration technologies:

RFC 3927 for self-assigned IPv4 addresses;
mDNS for name lookup;
DNS-SD for service discovery.

For this to work, we needed four pieces of software:

IPv4 link-local software for auto IP configuration;
Kernel patches for auto IP configuration;
mDNS software for name lookup and discovery;
Socket library hooks for name lookup.

A more extensive overview of software, including imple-
mentations we did not use, can be found at our website [5].

3.2.1. Link-local IPv4 addresses software
There are two possible approaches to implement self-

assigned IPv4 addresses. If the implementation is combined
with a DHCP client, it allows for smooth transition between
link-local IP addresses (when no DHCP server is found) and
routable IP addresses (when a DHCP server is available).
Another approach is to use it stand-alone and always pick a
link-local IP address. The transition approach was not necessary
for our situation, so we used the latter approach.

We used the following implementations:

Apple Darwin kernel where it is integrated with the bootp
package [14];

Microsoft Windows Windows XP;
ZCIP (Zero-Conf IP) a stand-alone implementation for Linux

that relies on the libnet and libpcap libraries [15];
Porchdog Howl a Linux implementation which includes the

stand-alone autoipd daemon [17].

3.2.2. Kernel patches
Broadcasting of ARP replies as described in Section 2.5

and 4 of RFC 3927 aids in detection of IP conflicts after a
network join. Network joins are a prime feature in optical
networks.

ARP replies must be handled in kernel-space, rather then
user-space. Since the default Linux kernel does not (yet)
support this, we wrote a kernel-patch for this feature.



F. Dijkstra et al. / Future Generation Computer Systems 22 (2006) 908–914 911
3.2.3. Multicast DNS software
Most software combines support for mDNS and DNS-SD.

We used these three implementations:

mDNSResponder also known as Bonjour [16], an open-
source implementation by Apple Computer, with
interfaces for C and Java and is available on Mac OS
X, Windows, and Linux;

tmDNS tiny multicast DNS, from the same project as
ZCIP [15];

Porchdog Howl a Linux implementation of mDNS and DNS-
SD [17].

3.2.4. Socket library hook
Most applications have no knowledge of multicast DNS for

name lookup. Instead of changing the applications, a better
approach is to alter the behaviour of the UNIX socket library
functions gethostbyname() and gethostbyaddr() to use
multicast DNS, beside the regular DNS and the /etc/hosts
file.

There are at least two ways to create these hooks.
On Linux, the cleanest method is to change the behaviour

of the Name Service Switch (which handles gethostby*()
calls). libnss mdns is a library written by Andrew White to do
exactly this. libnss mdns is distributed with mDNSResponder
from Apple Computer.

tmDNS, on the other hand, uses a different approach, and
listens to both port 5353 (multicast DNS) as well as 53 (regular
DNS) on the localhost interface. Localhost is specified as the
first line in /etc/resolv.conf, so that all requests first reach
the tmDNS daemon. If it gets a link-local specific request,2

it will then forward the request to multicast DNS. For other
requests, it returns a failure, so that the next (regular) name
server is used.

3.3. Demonstration software

In our demonstration, we used two discovery mechanisms:
one host discovery mechanism and a service discovery
mechanism. Most applications only use service discovery, but
we also wanted to detect laptops of visitors that did not offer
any services, let alone advertise them.

For host discovery, we used a simple Python script to sent
out an IP broadcast ping, and cache the results. We visualized
the results with a Java applet, as shown in Fig. 2. By using the
round-trip-time as a clue, we could guess the location of each
host: Amsterdam or San Diego. Every host in the figure picked
a link-local IP address in the 169.254/16 range, as well as a
hostname in the .local domain. Only the host in San Diego did
not announce its hostname, since that machine did not support
multicast DNS (in this case, due to an bug in one of the software
packages).

The software is available for download at our website [5].

2 Any request for a name in .local, .254.169.in-addr.arpa, .8.e.f.
ip6.arpa, .9.e.f.ip6.arpa, .a.e.ip6.arpa or .b.e.f.ip6.arpa.
Fig. 2. Screenshot of host discovery using broadcast pings.

Fig. 3. Screenshot of DNS service discovery: the Safari web browser discovers
a “ http. tcp” (web) service with the name “TrafficLight webcam”.

Service discovery, thus finding out the hostname(s) of server
applications, is an application-specific problem, rather than a
host configuration problem. We demonstrated DNS-SD, which
is an application-independent solution for service discovery,
with off the shelf software. A screenshot is shown in Fig. 3. The
use of DNS-SD for Grid applications was proposed by Maurizio
Giordano and is implemented in the AccessGrid toolkit [18,19].

3.4. Results

3.4.1. Technical feasibility
We have shown that self-assigned link-local IPv4 addresses

can be used in optical networks. We found that the protocols
we picked, IPv4 link-local addresses, mDNS and DNS-SD,
are technically sound. They indeed work for any link-local
network, even though they were designed for home networks
and ad hoc wireless networks.

In summary, we believe that this technology is sufficiently
mature to be rolled out to a larger set of applications that use
optical networks. Sections 3.4.2–3.4.6 list considerations which
need to be taken into account for a roll-out.

3.4.2. Robustness of current implementations
The implementation of link-local IP addresses in both

Windows and Mac OS X seems robust. In addition, Mac OS X
has a solid implementation of mDNS and DNS-SD, and Apple
is pushing this technology. Apple has ported its software
to Windows, and that version also worked flawlessly in our
experiment.

The implementation of link-local IP addressing as well as
mDNS and DNS-SD on Linux is not as solid. There are multiple



912 F. Dijkstra et al. / Future Generation Computer Systems 22 (2006) 908–914
implementations, and Fedora core installs one of these by
default. In general we experienced more problems on Linux,
which is unfortunate, since Linux is the default OS for most
scientific applications in optical networking. Currently, it takes
slightly more time to install and configure these technologies on
Linux (e.g. ZCIP with mDNSResponder), than it is to statically
configure IP addresses by hand.

Some of the bugs we encountered were:

• Bugs in both socket library hooks: libnss mdns had a
socket leak, and tmDNS did not operate well with the
mDNSResponder implementation. Shortly after we reported
the issue, the socket leak in libnss mdns was fixed.

• Hosts sometimes did not respond to broadcast pings.
Windows XP never replied to broadcast pings, even with
the firewall off. This affected our demo, but is not an
implementation bug.

• Name lookup sometimes failed for unknown reasons.3

3.4.3. Security issues
One of the assumptions of link-local networks is to trust the

data given by multicast DNS servers. LLMNR does support
DNSSEC, but only if there is a pre-established trust relation.

Authenticity of hosts can be verified on the application layer.
We demonstrated that it is possible to check the identity of a
host using GridFTP.

3.4.4. Network joins
IP address conflicts can happen just after two remote LANs

are connected to each other. In practice these conflicts are so
rare that we never experienced one during our demonstration.
When we artificially forced a conflict, we observed that hosts
were able to detect IP address conflicts, and responded by
reconfiguring their IP address. However, we also found that
the stale information is cached on some computers in the ARP
cache for up to 5 min.

3.4.5. Service discovery
Determining the name of a particular service is an

application-specific problem. The hostname problem with link-
local is slightly more complex, because .local names are not
advertised in the global DNS system, and can change in the case
of conflicts.

DNS-SD can be used to discover the hostname(s) of a
particular services, though this still does not tell the application
if it is running on the local cluster or on the remote cluster (or on
which remote cluster). Our host discovery solution using round
trip times is obviously no reliable mechanism.

A slightly better solution is to use .local names including
a component specifying the domain name of the cluster
(e.g. vangogh7.uva.netherlight.nl.local. instead of
vangogh7.local.).

A third option is to advertise the names of the hosts on the
link-local connection in another way, for example on a trusted
server in the remote organisation or using regular DNS. This
is possible using DNS dynamic updates, and Dynamic DNS
update leases [20,21].

3 Details can be found at our website [5].
3.4.6. Multi-homing
A known problem with link-local IPv4 addresses is that

it does not support multi-homed network devices. That is,
network devices with multiple network interfaces, all using
link-local addresses. In the network scenario we have sketched
so far, network devices are not multi-homed, since there
is only one interface using link-local addressing, possibly
connecting to multiple remote clusters. There may be a second
(management) interface, but that will use routable IP addresses.

Multicast DNS has the same multi-homing problem, even
with IPv6 link-local addressing, which allows applications to
explicitly specify the network interface.

3.4.7. Timing performance
Technically, both RFC 3927 and mDNS are expected to scale

up to latencies of 1000 ms round-trip time, though mDNS may
already experience additional overhead traffic after 350 ms.
That is about the RTT for a lightpath spanning the globe.

According to the specification, the configuration process
takes one round trip time. We did not perform extensive timing
measurements in our demo, but our results seem to agree with
the theory. The only time we experienced a delay longer then
one second was when we forced an address conflict with a
network join, as described in Section 3.4.4.

4. Conclusion

4.1. Applicability

If we look at the requirements posed in Section 1.1, we see
that the technologies described are suitable for ad hoc optical
networks connecting two or more clusters. The scalability of
this technology is determined by the scalability of Ethernet.
Optical networks are designed for connections from “few-to-
few” hosts, and indeed this technology will be capable of
handling a handful of geographically separated clusters. The
IPv4 link-local protocol scales up to a few thousand hosts,
before address conflicts become an issue. This is higher then
what seems feasible using a single Ethernet network.

Most other features listed in Section 1.1 are also met. Two
of them deserve some more explanation: first, this technology
only configures IP address, but does not alter the routing table
or support tuning of the protocol stack. Altering the routing
table only need to be done once with the link-local IP addresses
(since the link-local IP range does not change). Tuning of the
protocol stack is not solved. In our opinion, this needs to be
solved on the transport level, rather than on the network level.
For example, using the improved TCP versions in recent Linux
kernels.

4.2. Ethernet limitations

IP link-local addressing is built on top of an Ethernet
network with a single logical link. This limits the applicability
to networks without a router, such as a scenario with a limited
number of clusters. In particular, Ethernet is very inefficient
(unusable) for networks with loops, so a scenario with three



F. Dijkstra et al. / Future Generation Computer Systems 22 (2006) 908–914 913
Fig. 4. A true lightpath: a layer 1 or layer connection without routers. It can
use link-local IP addresses or a static (private) IP range.

Fig. 5. A dedicated routed path. Though it contains one or more routers, the
network connection is never shared with other traffic and has predictable and
guaranteed properties. Also QoS paths through the routed Internet fall into this
category.

Fig. 6. A path through the routed Internet, giving a best-effort service.

clusters, interconnected with a triangle-shaped network, cannot
be served using this technology.

If an optical private network gets too complex (i.e. consists
of more then a few lightpaths), it is necessary to either use
routers, or to physically split the network and use hosts with
multiple “link-local” interfaces. Neither solution is supported
by the zero configuration networking technologies as described
in this article.

For complex networks, it may be better to look into routing
protocols and address assignments in ad hoc networks [22,23].

4.3. iGrid networks

In our vision, each host in a simple “link-local” network as
shown in Fig. 4 has two interfaces: one connected to the routed
Internet for management purposes (not shown), and one on a
dedicated LAN, connecting all nodes of the involved clusters
together.

Conversely, each host in a “routed” network has one
interface, on which every other host connected to the Internet
could be reached.

Based on earlier scientific experiments involving optical
networks, we assume that these experiments either use the
routed Internet or use simple “link-local” networks. To test
our assumption, we examined the network setup of all
demonstrations held during iGrid 2005 [24]. Besides link-local
networks (Fig. 4) and regular Internet (Fig. 6) we discovered
another common network setup: the one shown in Fig. 5. In this
Table 2
Network setup per iGrid demonstration

Network set-up Number of demos

True lightpath (Fig. 4) 6 (12%)
Dedicated path (Fig. 5) 16 (33%)
Routed Internet (Fig. 6) 14 (29%)
Unknown 12 (24%)
Other 1 (2%)

network setup, the hosts only have one network interface, which
is used for both management purposes (the routed Internet) as
well as large data transfers on a dedicated path. This is done by
connecting that network interface to a router (gateway), which
redirects all traffic for a fixed set of IP addresses to a dedicated
link. The advantage of this setup is that there is no need to
change the routing table on the host. The network complexity
was handled by the network engineers of iGrid 2005, instead of
the applications.

Table 2 shows the percentage of demonstrations that use a
particular type of network. For twelve of the 49 demonstrations,
we could not retrieve information about their network setup,
for example because none of their lightpaths terminated at the
iGrid show floor, or the consulted network engineers were not
involved with a particular demonstration. One demonstration
that used IP multicast is listed as “Other”.

The number of demonstrators that used “true” lightpaths was
lower than we expected. According to private conversations
with the network engineers, this was mostly an engineering
decision, which limited the number of network changes
between time slots. If network changes occur more often
(e.g. because a reliable controlplane becomes available that
supports a complex network like iGrid [25]), true lightpaths
will be used more frequently. A driving factor could be that
moving from dedicated paths to true lightpaths would save ports
on relatively expensive routers, at the cost of using more ports
on relatively cheaper layer 2 switches.

4.4. Future research

Standardization work in this area has led to stable protocols.
Most work in this area seems finished. Also, service discovery
in scientific applications like Grid applications has been studied
and implemented [18,19].

An issue that deserves more attention is debugging world-
wide Ethernet networks. Unlike SONET/SDH, which carries
a lot of monitoring information, Ethernet connections are
extremely hard to debug. To illustrate, it took a skilled
network engineer considerable time to debug our San
Diego–Amsterdam network connection, even after the physical
path was decided and devices were configured. It turned out that
one interface on a switch was overlooked. The only debugging
mechanism was looking in the ARP table of switches along the
path. After these problems were supposedly fixed, it took us,
the demonstrators, more time to figure out that we didn’t get
the desired result, simply because one host refused to respond
to broadcast pings.



914 F. Dijkstra et al. / Future Generation Computer Systems 22 (2006) 908–914
So in short, automatic configuration of end hosts may indeed
save valuable time for network and system administrators.
However, the gain is hardly significant as long as there are
no automated tool for setting up lightpaths across multiple
administrative domains, or for fault detection.

Acknowledgments

The authors would like to thank the GigaPort project and
TNO for funding this research, and the network providers and
hosts at iGrid for making the demonstration possible. The idea
for using link-local IP addresses came from a discussion with
Venkat Vishwanath and Eric He during an OptIPuter meeting in
January 2005. A very special thanks goes to Stuart Cheshire for
taking the time to visit our lab in Amsterdam, fighting a cold
due to the Dutch weather. Last, thanks to Pieter de Boer and
Paola Grosso for helping us classify the iGrid demonstrations
and to Karst Koymans for proof reading this document.

References

[1] J.H. Saltzer, D.P. Reed, D.D. Clark, End-To-End arguments in system
design, ACM Transactions on Computer Systems 2 (4) (1984) 277–288.

[2] R. Bush, D. Meyer, Some Internet Architectural Guidelines and
Philosophy, RFC 3439, December 2002.

[3] Charter of (now concluded) IETF ZeroConf working group. http://www.
ietf.org/html.charters/OLD/zeroconf-charter.html, January 2004.

[4] E. Guttman, Autoconfiguration for IP Networking: Enabling Local
Communication, IEEE Internet Computing 5 (3) (2001) 81–86.

[5] F. Dijkstra, Zero configuration technologies and software, technical doc-
uments. http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf,
October 2005.

[6] S. Cheshire, B. Aboba, E. Guttman, Dynamic Configuration of IPv4 Link-
Local Addresses, RFC 3927, May 2005.

[7] S. Thomson, T. Narten, IPv6 Stateless Address Autoconfiguration, RFC
2462, December 1998.

[8] S. Cheshire, M. Krochmal, Multicast DNS, draft-cheshire-dnsext-
multicastdns, June 2005. Work in progress.

[9] B. Aboba, L. Esibov, D. Thaler, Linklocal Multicast Name Resolution
(LLMNR), October 2005. Work in progress.

[10] E. Guttman, C. Perkins, J. Veizades, M. Day, Service Location Protocol,
Version 2, RFC 2608, June 1999.

[11] S. Cheshire, M. Krochmal, DNS-Based Service Discovery, draft-cheshire-
dnsext-dns-sd, June 2005. Work in Progress.

[12] Y.Y. Goland, T. Cai, P. Leach, Y. Gu, S. Albright, Simple Service
Discovery Protocol (SSDP), draft-cai-ssdp-v1, October 1999.

[13] A. Gulbrandsen, P. Vixie, L. Esibov, A DNS RR for specifying the
location of services (DNS SRV), RFC 2782, February 2000.

[14] Apple Darwin kernel, http://developer.apple.com/darwin/.
[15] ZCIP (Zero-Conf IP) and tmDNS (tiny mDNS), available at http://
zeroconf.sourceforge.net/.

[16] Apple Bonjour, http://developer.apple.com/opensource/internet/bonjour.
html.

[17] Porchdog Howl, http://www.porchdogsoft.com/products/howl/.
[18] M. Giordano, DNS-Based discovery system in service oriented

programming, in: Advances in Grid Computing—EGC 2005, 2005,
pp. 840–850.

[19] AccessGrid, Python interface to mDNSResponder. http://www-unix.mcs.
anl.gov/fl/research/accessgrid/bonjour-py/.

[20] P. Vixie, S. Thomson, Y. Rekhter, J. Bound, Dynamic Updates in the
Domain Name System (DNS UPDATE), RFC 2136, April 1997.

[21] K. Sekar, S. Cheshire, M. Krochmal, Dynamic DNS Update Leases, draft-
sekar-dns-ul, June 2005. Work in progress.

[22] M. Thoppian, R. Prakash, A distributed protocol for dynamic address
assignment in mobile ad hoc networks, IEEE Transactions on Mobile
Computing 5 (1) (2006).

[23] K. Weniger, M. Zitterbart, Address autoconfiguration in mobile ad hoc
networks: Current approaches and future directions, IEEE Network 18 (4)
(2004).

[24] iGrid 2005, http://www.igrid2005.org/.
[25] P. Grosso, P. de Boer, L. Winkler, The network infrastructure at iGrid2005:

lambda networking in action, Future Generation Computer Systems (in
this issue), doi:10.1016/j.future.2006.03.013.

Freek Dijkstra received his M.Sc. in applied physics
from the Universiteit Utrecht in 2002. He is researcher
in System and Network Engineering group at the
Universiteit van Amsterdam, where he pursues a Ph.D.
degree. Freek’s primary interest is Optical Networks,
where he researches the multi-domain aspects.

Jeroen van der Ham received the M.Sc. degree in
cognitive artificial intelligence from the Universiteit
Utrecht in 2003, and the M.Sc. degree in system
and network engineering from the Universiteit van
Amsterdam in 2005. In 2005, he joined the System
and Network Engineering group at the Universiteit van
Amsterdam, where he is currently pursuing his Ph.D.
degree. His primary research interests are the network
control plane and its multi-domain aspects.

Cees de Laat is associate professor in the Infor-
matics Institute at the Universiteit van Amsterdam.
Current research includes hybrid networking, lambda
switching and provisioning, policy-based networking
and Authorization, Authentication and Accounting ar-
chitecture. With SURFnet he implements projects in
the GigaPort Research on Networks area. He serves
as Grid Forum Steering Group (GFSG) Infrastructure
Area Director and IETF Liaison. He is co-founder of

the Global Lambda Integrated Facility (GLIF).

http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://www.science.uva.nl/research/sne/wiki/CategoryZeroconf
http://developer.apple.com/darwin/
http://developer.apple.com/darwin/
http://developer.apple.com/darwin/
http://developer.apple.com/darwin/
http://developer.apple.com/darwin/
http://zeroconf.sourceforge.net/
http://zeroconf.sourceforge.net/
http://zeroconf.sourceforge.net/
http://zeroconf.sourceforge.net/
http://developer.apple.com/opensource/internet/bonjour.html
http://developer.apple.com/opensource/internet/bonjour.html
http://developer.apple.com/opensource/internet/bonjour.html
http://developer.apple.com/opensource/internet/bonjour.html
http://developer.apple.com/opensource/internet/bonjour.html
http://developer.apple.com/opensource/internet/bonjour.html
http://developer.apple.com/opensource/internet/bonjour.html
http://developer.apple.com/opensource/internet/bonjour.html
http://www.porchdogsoft.com/products/howl/
http://www.porchdogsoft.com/products/howl/
http://www.porchdogsoft.com/products/howl/
http://www.porchdogsoft.com/products/howl/
http://www.porchdogsoft.com/products/howl/
http://www.porchdogsoft.com/products/howl/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www-unix.mcs.anl.gov/fl/research/accessgrid/bonjour-py/
http://www.igrid2005.org/
http://www.igrid2005.org/
http://www.igrid2005.org/
http://www.igrid2005.org/
doi:10.1016/j.future.2006.03.013
doi:10.1016/j.future.2006.03.013
doi:10.1016/j.future.2006.03.013
doi:10.1016/j.future.2006.03.013
doi:10.1016/j.future.2006.03.013
doi:10.1016/j.future.2006.03.013
doi:10.1016/j.future.2006.03.013
doi:10.1016/j.future.2006.03.013

	Using zero configuration technology for IP addressing in optical networks
	Introduction
	Requirements
	Solution models

	Zero configuration technologies
	Automatic configuration of IP addresses
	Name lookup
	Service discovery

	iGrid 2005 demonstration
	Network setup
	Implementations
	Link-local IPv4 addresses software
	Kernel patches
	Multicast DNS software
	Socket library hook

	Demonstration software
	Results
	Technical feasibility
	Robustness of current implementations
	Security issues
	Network joins
	Service discovery
	Multi-homing
	Timing performance


	Conclusion
	Applicability
	Ethernet limitations
	iGrid networks
	Future research

	Acknowledgments
	References


