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a b s t r a c t

The goal of the OptIPuter project is to tightly couple research applications with dynamically allocated
paths. Since OptIPuter is a multi-disciplinary project, the paths through the network often span multiple
network domains, and the applications are challenged to find valid network connections through these
domains.

The challenge arises if the different network domains use different technologies. In this case, we have
a multi-layer path finding problem.

We will show that there are situations where algorithms as used in single layer networks, such as
BGP, SS7 and OSPF-TE, cannot find the shortest path. A shortest path in amulti-layer network can contain
loops, and a segment of a shortest path may not be a shortest path in itself.

To solve this problem, both a multi-layer network representation as well as new path finding
algorithms need to be developed. An additional challenge is to make a generic path finding algorithm
that is technology-independent, and does not need to be modified as new technologies emerge.

We show that it is possible to create solutions for all three problems. Using RDF-based techniques, we
model multi-layer networks and describe incompatibilities for the path finding algorithm in technology-
independent way. We also present a path finding algorithm that is able to use this information to find
valid paths.

© 2008 Dr Freek Dijkstra. Published by Elsevier B.V. All rights reserved.

1. Problem statement

Fig. 1 shows an example multi-layer network. Each circle in
the picture represents an administrative domain. The domains are
interconnected by links: the edges in the figure.

This example is based on a historic scenario, although the
topology is modified to emphasise our point.

The example network contains two types of links: Gigabit
Ethernet (GE) and OC-192 links. OC-192 connections are based on
SONET technology and carry 192 STS channels. Each STS channels
can carry roughly 51 Mbit/s, so multiple STS are needed to carry
1 Gbit/s Ethernet. The Ethernet coming from the two universities
is transported over the OC-192 links by embedding (adapting)
Ethernet in STS channels. Unfortunately, multiple standards exists
that describe how to do this adaptation. In our example, CA*net
can embed Gigabit Ethernet in 24 concatenated STS channels (STS-
24c adaptation), while NetherLight can embed Gigabit Ethernet in
21 STS channels (7 virtual containers of 3 concatenated channels,
STS-3c-7v). StarLight supports both methods to adapt Ethernet in
STS channels.
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Fig. 1. Example of a multi-layer and multi-domain network, extended from an
example presented in [1].

We claim that the shortest path from the Universitédu Quebec
to the University of Amsterdam contains a loop — it uses the same
physical link twice.

The path Quebec – CA*net – MAN LAN – NetherLight –
Amsterdam is not valid since the adaptation performed at CA*net,
adaptation of Ethernet in 24 STS channels, is incompatible with
the adaptation of Ethernet in 21 STS channels, as performed in
NetherLight. We observe that this incompatibility occurs between
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Fig. 2. The shortest valid network connection from Université du Quebec to
University of Amsterdam through the example network of Fig. 1.

two domains (CA*net and NetherLight) that are not directly
connected to each other.

Furthermore, the pathQuebec –CA*net – StarLight –MANLAN–
NetherLight – Amsterdam (with conversion between STS-24c and
STS-3c-7v at StarLight) is not valid because CA*net adapts Ethernet
in 24 STS channels, and only 22 STS are available between CA*net
and StarLight.

The shortest valid path is Quebec – CA*net – MAN LAN –
StarLight – CA*net – MAN LAN – NetherLight – Amsterdam, as
shown in Fig. 2. This shortest path contains a loop: the link CA*net
– MAN LAN is used twice. In the section CA*net – MAN LAN –
StarLight, Ethernet is adapted in 24 STS channels, while the section
StarLight – CA*net –MANLAN–NetherLight embeds Ethernet in 21
STS channels. Also, observe that this second section is not a shortest
path in itself. The shortest path between StarLight andNetherLight,
is StarLight – MAN LAN – NetherLight, even when incompatible
adaptations and bandwidth restrictions are taken into account.
Thus a segment of a shortest path does not have to be a shortest
path in multi-layer networks.

The reason for the strange behaviour aswehave seen (loops and
the fact that a shortest path does not need to be composed of other
shortest paths) is thatmulti-layer path finding is a path-constrained
problem. Single layer algorithms such as path vector algorithms in
SS7 [2] and BGP [3] or link state algorithms in OSPF-TE [4] can only
deal with link-constrained problems. In a link constrained problem,
the possibility to use each edge is independent from the use of
other edges. In a path constrained problem, the possible use of an
edge depends on the choice of other edges in the path. For example,
data can only be extracted (de-adapted) from a lower layer if there
is a corresponding adaptation function earlier in the path.

2. Multi-layer network description language

A simple graph only describing devices as nodes and links
as edges is not sufficient to describe multi-layer networks. The
basic problem is that multi-layer networks have at least three
fundamental ‘building blocks’ (devices, links and adaptations),
while graphs only provide two ‘building blocks’ (vertices and
edges). In earlier work, we defined a multi-layer network
model [1] based on ITU-T Recommendation G.805 functional
elements [5] and the label concept in GMPLS [6]. This combination
of functional elements and labels is also present in the recent ITU-T
Recommendation G.800 [7]. Our main contribution is that we can
describe the state of a network (such as G.800 and G.805 can), and
also describe how this state can be changed: the capability of the
network, as required for path finding.

We turned this abstract network model in a syntax [8] by
extending the existing Network Description Language, NDL [9,10].

Rather than defining technology-specific ontologies, we first
described generic properties of multi-layer networks based on
our abstract model. This ontology contains the classes Layer,

Adaptation (includingmultiplexing and inversemultiplexing), and
Labels.

Since the technology descriptions refer to generic concepts, a
path finding algorithm only needs to know those generic concepts
and does not need to be adjusted as new technologies emerge.

Using the network ontology and technology description, net-
work administrators can describe their networks. Each administra-
tor can publish information about their own network, either with
full details or only an abstracted view of their network. Because
our syntax is based on RDF [13], the domains can link to each oth-
ers network descriptions using the RDF seeAlso property.

3. Technology descriptions

The multi-layer network description has been published
earlier [10], but we did not have experience with the actual
usage at that time. The effectiveness of our model depends on the
ability to model existing protocols in this simple network. Most
technologies could easily be described in the model, despite the
limited number of classes (only Layer, Adaptation and Label). We
created technology descriptions for technologies WDM, SONET,
SDH, ATM, fibre and Ethernet. OTN is missing from this list, since
we did not have enough experience with those standards.

The descriptions of these technologies proved possible in nearly
all situations, and we defined some guidelines how to model two
incompatible encodings of a certain technology.

(1) If two encodings can never appear in conjunction on the same
link, model it as two different layers. For example, no SONET
interface can automatically switch between OC-48 and OC-
192, so we modelled OC-48 and OC-192 as two distinct layers.

(2) If the compatibility appears in different labels, model it as a
label. For example the difference between tagged anduntagged
Ethernet is the presence or absence of a label.

(3) If the incompatibility has many distinct options (such as a
MTU from 1518 to 16114 bytes), then we model it as a layer
property to avoid an explosion of possible adaptations or
possible layers.

(4) If two encodings occurs only in combination with one or a few
other layers,wemodel it as a different adaptation. For example,
we model the different spacings of WDM systems (CWDM,
DWDMwith 25, 50 or 100GHz spacing) as distinct adaptations.

(5) If all alternatives are exhausted, model it as a (technology-
specific) layer property.

Different packet sizes in Ethernet was the only incompatibility
we could not capture using our model. We can describe it in NDL,
but as a technology-specific layer property. This means that the
technology independent path finding algorithm can not take it into
account, and has to be handled at the signalling phase.

While describing Ethernet andWDM technologies, we encoun-
tered two non-straightforward encodings. Tagged Ethernet is de-
scribed as Ethernet in Ethernet. Additional logic was required to
describe interfaces which can accept both untagged, tagged and
Q-in-Q Ethernet [11] at the same time (such as the Ethernet in-
terface in CA*net, which only adapts it in STS channels but does
not process the individual frames). The additional logic defines
when a label is absent (untagged Ethernet). The calculation of
available wavelengths in WDM was non-trivial, since the DWDM
standard [12] defines an infinite number ofwavelengths,with non-
constant spacing between the different wavelengths. The most
simple solution is to force interfaces to list the set of all available
wavelengths.

Furthermore, we defined the switching capability of devices
using only two parameters: the layer and label-conversion
capability. For example, most Ethernet and WDM switches can
not convert between VLAN tags or wavelengths, while most STS
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devices are able to convert between timeslots. Ethernet required
the definition of a third parameter, to distinguish between unicast,
multicast and broadcast switches.

The generic concepts even allowed us to model ‘‘technologies’’
such as fibre ducts (a bundle a fibres through the same trench in
the street), effectively providing information for shared risk link
groups.

4. Path finding

There are at least two path finding algorithms through multi-
layer networks, a variant of the breadth first search algorithm and
a variant of a k-shortest path algorithm [14]. The first algorithm
operates on a graph which is similar to the abstract network
description we used (and has O(|N| × |Y |) vertices, with |N|
the number of nodes, and |Y | the number of network layers).
The second algorithm operates on a graph which which has
significantly more vertices, one for each possible technology stack
for each node (|V | ≈ O(|N| × T |Y |) with T the number of
incompatibilities per layer). A network domain in the first graph
can bemapped to vertices and edges using only local knowledge of
the domain. A domain in the second graph can only be described
with topology knowledge of all other domains.

We have chosen to implemented the first breadth first search
algorithm, because its mapping from NDL description to graph
was more straightforward, and could be done using only local
knowledge of a domain.We feed this algorithm a representation of
the example network of Fig. 1 and tested if it could find the shortest
valid path.

Fig. 3 shows a graphic representation of our multi-layer
network model for our example network. In this figure, the circles
are logical interface and the diamonds switch matrices. The black
squares are domains or devices. The layers are represented by
different colours. Physical interfaces are mapped to an adaptation
stack with multiple logical interfaces.

The result of the path find algorithm is shown in Fig. 3 as well.
The coloured path is the shortest path, traversing Quebec – CA*net
– MAN LAN – StarLight – CA*net – MAN LAN – NetherLight –
Amsterdam. Observe that the link CA*net – MAN LAN is indeed
traversed twice, as represented by a thicker line.

The algorithm we use is basically a breadth first search
algorithm. It starts at interface if1-eth at Quebec, and the list of
possible path is expanded with one hop this is repeated till if1c-
vc4 at CA*net where the possible paths branches at the switch
matrix. Each branch is tried at the same time, hop by hop. There are
two possible locationswhere a path can branch: at switchmatrices
and at interfaces that support multiple adaptations, such at if2-
vc4 in StarLight, which can adapt to either if2-eth7 and if2-
eth8. Branches are terminated if they can never lead to a viable
shortest path. Terminations occur if (a) the layers do notmatch; (b)
at de-adaptations: if the adaptations do not match; (c) at a switch
matrix without label conversion: if the labels are not compatible;
and (d) at (inverse) multiplexing adaptations: if no more channels
are available.

5. Algorithm variants

Path finding is part of a four-step process to set up network
connections. The steps are (1) routing, the distribution of the state
of a device or domain to its neighbours; (2) path finding, determine
(a) viable path(s) using the given information; (3) select a path
and determine its parameters that have not been decided upon;
(4) path provisioning, configuring the actual network elements.
NDL provides a way to distribute routing information. This article
mostly dealswith step 2, path finding. Steps 3 and4 are not covered
at this time.

Table 1
Number of iterations required by different algorithm variants to find the shortest
path in network of Fig. 1

Algorithm variant Number of iterations

Unrestricted flooding 1.6 × 1015 ± 36% iterations (estimate)
Flooding without direct loopbacks 18 × 1012 ± 27% iterations (estimate)
Explicit direction
(ingress/egress)

587 iterations

No repeated stacks in path 486 iterations

Shortest path to stack only 245 iterations
Interfaces used once per path No result found (False negative)

Adaptation restriction only
(ignore labels)

False positive after 219 iterations

Topology restriction only False positive after 134 iterations

If our algorithm is not terminated when the shortest path is
found, other branches will continue to try new paths. This may
yield other possible paths, and the algorithm turns into a k-shortest
path finding algorithm.

The path finding mechanism described in this article provides
an exact result. Its focus is on accuracy as opposed to speed. It
is possible to remove some of the branch termination logic. For
example, by not counting the available channels or not checking
for compatible labels. Thismay give a few false positives: paths that
contain incompatibilities and can not be used in practice. This may
not be a problem if it is combined with a k-shortest path variant,
since alternative paths may yield a correct solution. Alternatively,
it is possible to increase the number of branch termination rules.
While this reduces the flooding nature of our algorithm, it may
result in false negatives (no path found, while one is in fact
available). For example, it is possible to terminate if a node is
processed twice. This assumes that a shortest path never contains
loops, even though that is possible as we have seen in our example
network. It is also possible to terminate if a node is processed twice
with the same adaptations stack. This assumes that segment of a
shortest path is also a shortest path.

Changing the branch termination rules may increase the
number of false positives and false negatives, but reduce the time
complexity of the algorithm. For example, the last two rules in
previous paragraph would limit the number of branches in the
algorithm toO(|N|×|Y |) andO(|N|×|S|) respectively,with |N| the
number of nodes (domains, devices or interfaces), |Y | the number
of layers, and |S| ≈ T |Y | the number of possible technology stacks.
Without these branch termination rules, the number of branches
may grow exponentially without upper limit.

Table 1 lists a few results for protocol variants. The first four
variants return an exact result, with various degree of suppression
of the broadcast mechanism. The middle variants have even
greater suppression, but not find the correct path. The last two
variants combine this suppression with loosened restrictions,
which may yield false positives.

GMPLS has a clear decoupling between routing (OSPF-TE [4]),
path finding (PCE [15]) and signalling (RSVP-TE [16]), and works
with limited information (OSPF-TE does not distribute information
about available labels). The stitching framework developed in
Gèant2 [17] is also geared towards the signalling phase, where the
choice for parameters are made. The stitching framework defines
rules about matching or non-matching parameters and describing
technology-specific parameters in terms of these common rules.
This is a very similar approach as we used in NDL, were
technologies are described using a common model. Both NDL and
the stitching framework are technology independent.

The flexibility of our approach can be seen by another variant
of path finding algorithm, the path walk algorithm. This variant
does not traverse the possible connections, but the currently
configured connections. Effectively, it finds the current configured
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network connections instead of the potential available network
connections. We use this path walk algorithm as the basis for a
fault isolation framework which is able to detect anomalies in the
published network configuration, and thus detect and isolate faults
across domains.

6. Conclusion

We have shown a working implementation of a breadth first
search algorithm that can find paths in multi-layer networks.
Among the lessons we have learned during its development are:
• A shortest path in a multilayer network can contain a loop (the

same link is used twice)
• A segment of a shortest path in a multilayer network does not

have to be a shortest path by itself.
• Multi-layer path finding is a path-constrained problem. Single

layer path finding is a link-constrained problem.
• A simple graph only describing devices as nodes and links as

edges is not sufficient to describe multi-layer networks.
• If the network description uses a technology independent

model, the path finding algorithm does not need to be adjusted
as new technologies emerge.

• SONET, SDH, ATM, Fibre, WDM, and the VLAN part of Ethernet
technologies can be described using only three base classes:
Layer, Adaptation and Label.

• Network descriptions based on RDF can be distributed, as
domains can link to each others using the RDF seeAlso
property.

• Our RDF-based network description can not only describe the
state of the network, but also how that state can be changed.
This is required for path finding.

• The capability description only required three parameters for
a switch matrix: the layer, label conversion capability and
– for Ethernet – distinction between unicast, multicast and
broadcast.
Our implementation can even if the shortest path contains a

loop or if a segment of a shortest path is not a shortest path in itself.
Using this algorithm, applications in the OptIPuter project will
be able to find dedicated network connections between different
domains, even if those domains use different technologies.
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